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Stochastic calculus in superspace: 11. Differential forms, 
supermanifolds and the Atiyah-Singer index theorem 

Alice Rogers 
Department of  Mathematics, King's College, Strand, London WC2R 2LS, UK 

Received 19 March 1992 

Abstract. Starting with vector bundles over manifolds, supermanifolds are constructed 
whose function algebras correspond to twisted differential forms. Stochastic calculus for 
bosonic and fermionic Brownian paths is used lo provide a geometric construction of 
Brownian paths on lhese supermanifolds. A Feynman-Kac formula for the heat kernel 
of the Laplace-Beltrami operator is lhen derived. lhis is used to provide a simple, 
rigorous venion of  lhe supemymmetric proofs of  the Atiyah-Singer index theorem. 

1. Introduction 

In this paper superspace stochastic calculus is used to define covariant Brownian paths 
on supermanifolds, and thus to extend fermionic path integration to curved space. 
The construction is used to study the Laplace-Beltrami operator on differential forms 
on a Riemannian manifold. 

The stochastic techniques employed in this paper are somewhat different from 
those in other work where probabilistic methods are used to study the Laplace- 
Beltrami operator on forms and related objects. The key difference is the use of 
fermionic Brownian paths which are paths in a space of anticommuting variables. 
This approach, which is described in [l] and the companion paper [2], is designed 
I" fiU.,U,.,",U "1 .A""11J -0 y""","" " " L l l  ,,L"II""I" l.lL.111 p L 1 L . 7  all" L l . 1  Lc.IIIII"I,IL. 

paths of the physics literature which were introduced by Martin [3] and have proved 
a powerful tool in heuristic calculations. Rigorous fermionic path integration along 
these lines has also been considered by Haba [4]. Superspace stochastic calculus 
considers Brownian paths in superspace, a space parametrized by both commuting 
and anticommuting variables. Such spaces do not directly model physical space, but 
are useful mathematical constructs because the spaces of functions naturally defined 
on them carry representations of fermionic operators defined in physics, and also 
(in a geometric context) of differential operators on forms on manifolds and on 
cross sections of spin bundles. One aim of the current paper is to show that these 
superspace paths, when handled in a rigorous manner, lead to new and useful analytic 
techniques. 

In the context of conventional probability theory (without anticommuting vari- 
ables) an extended study of probabilistic techniques applied to many aspects of analy- 
sis on manifolds has been made by Elworthy [5];  this work includes a straightfonuard 
probabilistic proof of the Gauss-Bonnet-Chern theorem. There are a number of 
other works on applications of probabilistic methods to index theory and localization, 
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such as the work of Bismut [6], Jones and Leandre [7], Leandre [SI, Lott [9] and 
Watanabe [lo]. These other works use more technical probabilistic methods, such 
as Malliavin calculus, than those of this paper, where analytic estimates based on 
comparisons of solutions of stochastic differential equations are used. Also, in this 
paper heat kernels are obtained by Duhamel’s formula, rather than by the use of 
Brownian bridges. Supermanifolds are also used in Getzler’s proof of the index the- 
orem, which uses pseudo-differential operator methods to obtain the necessary heat 
kernel asymptotics [ll]. A detailed account of these methods may be found in the 
recent book of Berline er al [12]. 

When considering fermions in curved space, and differential forms on Rieman- 
nian manifolds, flat global superspace must be replaced by what is known as a super- 
manifold; essentially supermanifolds are extensions of ordinaly manifolds to include 
anticommuting coordinates. Section 2 defines some supermanifolds which can be 
constructed in a natural way from a vector bundle over a Riemannian manifold. The 
construction does not depend in any essential way on which of the various approaches 
to supermanifolds existing in the literature is used. The supermanifolds constructed 
allow superspace stochastic techniques to  be applied to various physical and geometric 
problems. 

Section 3 of this paper contains a geometric formulation of Brownian paths on 
supermanifolds. As in the classical treatment of Brownian paths on a manifold 
[13,14], this is done by constructing stochastic differential equations globally on the 
supermanifold. Next, using key technical results from the companion paper [2],  these 
paths are used to give a Feynman-Kac formula for the Laplace-Beltrami operator 
for twisted differential forms. 

In the final section of the paper this formula is used to give a rigorous version 
of the very simple proofs of the index theorem using supersymmetry due to Alvarez- 
G a m 6  [15] and to Friedan and Windey [16]. In I151 and [16] the path integral 
calculations are carried out by physicists’ methods which are not entirely rigorous, 
particularly in curved space; the stochastic machinery developed in this paper al- 
lows these steps to be made rigorous without spoiling the underlying simplicity and 
elegance of the approach. 

The proofs of the index theorem given in [15] and [16] used formulae for the 
index of a differential operator in terms of an evolution operator exp - H t ,  where H 
is the Hamiltonian of a supersymmetric system. The first example of such a formula 
was given by McKean and Singer 1171; subsequently Witten showed that properties of 
supersymmetric quantum mechanics could be used to derive many analogous formu- 
lae [18]. The evolution operator was then expressed in terms of path integrals. Using 
techniques which are not fully rigorous, it was then shown that, for the purposes of 
calculating the index, the complicated curved-space Hamiltonian H could be replaced 
by a much simpler flat-space supersymmetric magnetic oscillator Hamiltonian whose 
evolution operator was then calculated exactly by standard methods. It is the validity 
of this approximation which is established by the stochastic calculus techniques de- 
veloped in this paper. The approach taken in this paper thus retains much Of the 
simplicity of the original supersymmetric proofs [15,16]. 

2. Supermanifolds and differential forms 

This section is purely geometrical, constructing supermanifolds which provide the 
appropriate arena for the Brownian paths of sections 3 and 4. The supermanifolds 
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are constructed using the data of a vector bundle over a conventional manifold in such 
a way that the space of supersmooth functions on this supermanifold is isomorphic to 
the space of twisted differential forms on the manifold. In section 3 this construction 
is used to transfer superspace Brownian motion to bundles of twisted differential 
forms. 

A supermanifold is a space which has some commuting and some anticommuting 
coordinates. There are a number of different approaches to supermanifolds in the 
literature, which are broadly equivalent; the constructions in this paper do not depend 
on the detailed aspects of any particular approach. The important fact is that all 
local coordinates belong to a graded commutative algebra, with even elements (which 
commute with elements of either parity) represented by lower-case Roman letters 
and odd elements (which commute with even elements but anticommute with any 
odd element) denoted by Greek letters. The dimension of a supermanifold is an 
ordered pair of integers which specifies the number of even and odd local coordinates. 
Some facts about the analysis of commuting and anticommuting variables are given 
in section 2 of the companion paper [2]. More detailed accounts may be found 
in [19]. As in the case of conventional manifolds, a supermanifold can be entirely 
characterized by its coordinate transition functions, an approach that is used in this 
section. Details of the reconstruction of a supermanifold from its transition functions 
may be found in ['LO]. 

Let M be a smooth, compact m-dimensional real manifold and let E be a smooth 
n-dimensional Hermitian vector bundle over M .  Suppose that { U , ] .  E A) is an 
open cover of M by sets which are both coordinate neighbourhoods of M and local 
trivialization neighbourhoods of E. For each a E A let 4, : U, - Rn be the 
coordinate map on U,, and for each a , p  E A let ha, : U, n U p  + U(n) be the 
transition function of the bundle E (so that for each p E U, n U, ( h e p r d ( p ) )  is a 
unitary n x n matrix). Additionally let { ~ , ~ l a , p  E A )  be the coordinate transition 
functions on M ,  that is T , ~  : +bo( U ,  n U p )  -+ +,( U ,  n U p )  with T , ~  = 4, o +;', 
and let ( m n p i k ( z p ) )  = (azb/az$) be the corresponding Jacobian matrix. 

The required supermanifold S ( E )  is the ( m ,  m + n)-dimensional supermani- 
fold built over M with local coordinates (xk, . . . , z,", e:,  . . . , SF, q:, . . . ,q:) and 
transition functions 

1 1 T , ~  : (x,,.. . , q , e p , .  . . , o ; ; , v ~ ,  . . . , v ; )  
k 

++ (TAp(zo)r " . 3  T$(z,)> m a p ' l r ( z o ) B p , .  " I m a p m k ( x p ) B j ,  

h,p l r (+ ; ' ( "o ) )8 ; .  . ' ' 3 h,onJ4;'("p))V;) ' (2.1) 

(Here and elsewhere the convention that repeated indices are to be summed over 
their range is used.) 

A useful space of functions is the space C"( S( E)) of functions f which locally 
take the form 

(2.2) 

where @ = p l . .  . p k  is a multi-index with 1 < p1 4 . .  . 4 p k  < m, M ,  iS the Set of 
all such multi-indices (including the empty one), 0'' = OF' . . 6 " k  and each f,, is in 
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Cm(Rm,C). (It should be noted that these functions are linear in the qr but may 
be multilinear in the 0'; the nature of the transition functions (2.1) ensure that such 
functions may be consistently defined.) Now it may be seen that, again as a result of 
the choice of transition functions (2.1), there is a globally defined map 

I : r(n(,w) B E )  -, c-'(s(E),c) 
which may be obtained from the local prescription 

I ( s ) ( ~ , ~ , v )  = xf,,,.(")ew' if s ( z )  = xf,,,(z)dz"e' 
n n 

p E M ,  r=l  p E M ,  r=l  

(2.3) 

where Q ( M )  is the bundle of smooth forms on A4 and ( e ' ,  . . . , e " )  is the appro- 
priate basis of the fibre of the bundle E. Also, this map is an isomorphism of vector 
spaces, and indeed of sheaves. 

The crucial feature of this construction, which is itself quite simple, is that it 
allows one to express the Hodge-de Rham operator on twisted differential forms 
on A4 as a differential operator on the extended space of functions C"(S(E) ,@) .  
Fermionic path integration techniques then allow one to use stochastic methods to 
analyse these operators in the usual way. 

Explicitly, suppose that M is a Riemannian manifold with metric g, and that a 
connection has been chosen on the bundle E. Then, in local coordinates, if one 
introduces the notation 8' = 8/8zi, 6,. = 8/88' and 6,,? = 8/8qF, the Hodge- 
de Rham operator d + 6 takes the form 

(2.4) d + 6 = ( 0 ' - g i ' 6 , j ) 8 i - g i f T i j k 8 J 6 , , 6 , , + ( 8 i  -g'Jjdj)Ai J T  7 6,,.. 

where T..' are the Christoffel symbols of the Riemannian connection on (M,g) 
and Ai :i are the components of the connection one form on E pulled back to 
the coordinate neighbourhood by the section corresponding to the local trivialization. 
Using the notation li)' = 8' - giJa/88J, this takes the simpler form 

d + 6 = $'(ai - T i j p 0 J 6 , k  - Ai ,.'rl'6,,.) . (2.5) 

As will emerge in section 5, it is the heat kernel of the square of this operator, the 
Laplace-Beltrami operator, which can be studied by fermionic stochastic calculus, and 
is relevant to the proof of the Atiyah-Singer index theorem. For these purpose it is 
useful to establish the following lemma, which is a twisted version of the Weitzenbock 
formula relating the Bochner Laplacian to  the Laplace-Beltrami operator. The proof 
uses the method of Cycon et af  [21], generalized to the twisted case. (A normalization 
factor of $ is included in the Laplace-Beltrami operator to conform with the standard 
normalization of Brownian motion.) 

Lemma 2.1. Let L = i ( d  + 
functions C"(S( E ) , C ) .  Then 

be the Laplace-Beltrami operator on the space Of 

L = - i ( B  a - RI ( )8'6,, ' - iRkiJ'(z)e'Ok6,,6,t  + ~ [ $ ~ ~ , y Y ] & j ~ ' ( z ) r l ~ 6 ~ . )  
(2.6) 
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where Rkjmq are the components of the curvature of ( M , g ) ,  F,,,s are the com- 
ponents of the curvature of the connection on E ,  and B is the twisted Bochner 
Laplacian, 

B = giJ(DjDj - r i j k D k )  

D j = a . - r . . k 0 ' 6 a ' - A i r b l ) r 6 1 1 . .  I IJ (2.8) 

(2.7) 

with 

Proof. 

L = $(@Dj+'Dj) 

= $ (( f {+', 1L.' } + $ [ ~ .  J.' I )  Di D j  + +'[Di, fl I D , )  (2.9) 

(where (, ) denotes an anticommutator and [ ,] denotes a commutator). Now 

(2.10) 

Also 

Thus 

Hence 

(2.12) 

(2.13) 

as required. 
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One further supermanifold is required for the stochastic constructions in the fol- 
lowing section. This is a super extension S( O( M ) ,  E) of the bundle of orthonormal 
frames on the m-dimensional manifold A4 (again twisted according to the Hermitian 
bundle E). The supermanifold S ( O ( M ) ,  E) can be defined by its coordinate transi- 
tion functions; suppme that {U,Ja E A} is again an open cover of M by sets which 
are both coordinate neighbourhoods of M and local trivialization neighbourhoods 
of E. Let zi, b z ,  i = 1 , .  . . , m, U = 1 , .  . . , f m ( m  - 1) be local coordinates on 
O ( M ) l u s .  Then S ( O ( M ) , E )  is the [fm(m+l),m+n]-dimensional supermani- 
fold with local coordinates zi, b:, e:, 17;. On overlapping neighbourhoods and 
U p  the coordinates zi,  O j  ,q' have the transition functions defined by (2.1). while the 
coordinates bU transform as on the bundle of orthonormal frames O( M). 

It should be noted that anti-commuting variables are introduced in order to pro- 
vide function algebras which have geometric and physical applications; anticommuting 
variables do not directly model physical situations. An important algebraic too! is the 
Berezin integral [22] which integrates out the anticommuting variables to give a real 
or complex number. This is defined in the following manner. Suppose that f is a 
polynomial function of p anticommuting variables a l ,  . . . , u p .  Then 

f ( a )  = ka'a2  . . , ap + lower-order terms (2.15) 

where k is a real or complex number. The Berezin integral is then defined by 

(2.16) 

The integral defined by this simple prescription has a number of useful properties 
which will be exploited in later sections of this paper. 

3. Geometric Brownian paths on supermanifolds 

This section constructs Brownian paths on the supermanifolds introduced in section 2. 
Before discussing these generalized Brownian paths in curved superspace, a brief 
review of path integral techniques for classical manifolds is given. 

Clearly it is not straightfonvard to transfer Brownian motion to the setting of a 
general manifold, because Brownian motion, while invariant under rigid Euclidean 
transformations, will not survive more general coordinate transformations. Various 
analogues of Brownian motion on Riemannian manifolds have been considered, two 
of which will be described here because they are suitable for generalization to Su- 
persprce. The first m e t k d  3 strzightfcwird in princip!e--anc simp!y ~ p p ! ~ c e s  the 
Wiener measure with a measure whose finite-dimensional marginal distributions are 
based on the heat kernel of the Laplacian of the  manifold, an approach which leads 
almost trivially to a Feynman-Kac formula for a Hamiltonian which is the sum of the 
Laplacian and arbitraiy first-order and scalar terms. This approach has been used in 
conjunction with fermionic Brownian motion in [23] to analyse the Hodge-de Rham 
operator on a Riemann manifold, and hence prove the Gauss-Bonnet-Chern for- 
mula; however its usefulness is limited by its dependence on information about the 
heat kernel of the Laplacian, which is itself a highly non-trivial object. 

A second approach to Brownian paths on manifolds, described in [13] and [141, 
is to use paths which are solutions of stochastic differential equations, these being 
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defined in a manner which is globally valid. The second-order correction term in the 
It6 formula (equation (3.1) of [2]) prevents one from using vector fields and other 
tensorial objects in the obvious way, a difficulty which is overcome by modifying the 
It6 integral so that a compensating term is included in the transformation rule. The 
most elegant way of doing this is to introduce the symmetric product or Stratonovich 
integral, which is defined in the following way. 

I" ndinition 7 1 Sunnme --rT-."- thnt " _ _  Y8 ifid y8 ~ t o ~ h g g i ~  igegr& ~ i t h  

d X 8  = fa,,db: + fo ,sds  dYs = ga,,db; + go,.ds. ( 3 4  

Then 

Y, odX, =del  Y,(f,,,,db: -I- fo, ,ds) + $f,,,g,,.ds. (3.2) 

(Here b;, a = 1,. . . , m denotes m-dimensional Brownian motion, and db: denotes 
an It6 differential.) As before, a repeated index is summed over its range. 

Now suppose that, for a = 0 , 1 , .  . . , m, A, are vector fields on a p-dimensional 
manifold N .  In a local coordinate system ( zl, . . . , zp) where A, = A;(a:)a/az' 
consider the stochastic differential equation 

dz: = Ab(z,) o db: + Ab(z , )ds .  (3.3) 

By applying the It6 calculus one finds that (3) is form-invariant under change of 
coordinate !E3 = * ( I * ) ,  where 5 is a change of coordinate function The solution 
to such an equation exists globally, as can be shown by a careful patching argu- 
ment [13,14]. Such equations enable one to define a notion of stochastic flow on a 
manifold. They also enable one to construct functions on N x Fit which satisfy the 
differential equation 

af 1 _ -  - -A,A,f with f ( r , O )  = h(s) 
a t  2 (3.4) 

where h is a smooth function on N and A, has suitable properties, as in the following 
theorem. 

Theorem 3.2. Suppose that z1 is a solution to (3.3) with initial condition z0 = I E 
M. Then f ( z , t )  = E ( h ( s , ) )  satisfies the differential equation (3.4). 

Outline of Proof. Using the It6 formula, and omitting details of the patching of 
solutions over different coordinate neighbourhoods, 

E(h(z,)) - h ( z )  = E(/ 0 a ih(z , )dz :  + 1 ' 1  
Z A h ( I , ) A : ( I , ) a i a j h ( z , ) d s ) .  

(3.5) 

Now 

d i i  = Ai(z,)db" + fA ' , ( z8 ) (a ,Ai (z s ) )ds .  (3.6) 



6050 A Rogers 

Thus, using the fact that It6 increments db: have zero expectation and are indepen- 
dent of b, when U < s, one finds that 

= 1' i A , A , h ( z , ) d s .  (3.7) 

Hence, for suitable A,,, 

~ ( h ( z , ) )  = e : ( A - A a ) ' h ( z )  (3.8) 

and thus f(z,t) = E(h(z,)) solves (3.3). (The I dependence of f(z,t) comes from 
0 

In the case of a Riemannian manifold (M, g), when one wishes to construct paths 
which will help in the study of the Laplacian and related operators, one uses O( M), 
the bundle of orthonormal frames on  M, as the manifold N, and considers the m 
canonical horizontal vector fields on this bundle as the vector fields A,. Suppose 
that ( p ,  e,) is a point in O( M), that is, p is a point in M and e,, a = 1, .  . . , ni is 
an orthonormal basis of the tangent space at p. Then, if z i  are local coordinates at 
p and 

the initial condition satisfied by zt.) 

the m canonical horizontal vector fields on O( M) are 

(3.10) 

where the functions rimt are the Christoffel symbols for the Riemannian connection. 
In this case, following the general form of (3.3), one obtains the stochastic differential 
equations 

d+: = e: , ,  o db: de:, ,  = - e : , + e f , + r j k i ( z a )  o d b t  . (3.11) 

To see the connection with the Laplacian, suppose that z i l  eh,,, (a,i = 
1 , .  , . , m) are solutions to (3.11) with initial condition (in a partlcular coordinate 
system) I, = I E M ,  e:, ,  = e:, where e, = eht3/azi is an orthonormal frame at 
z. Then, again omitting details of the patching of solutions on different coordinate 
charts, if f is a smooth function on O( M), 
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In the particular case where f depends on x only, (that is, f = g o T where T : 
O( M )  -+ M is the projection map, and g E C"( M ) ) ,  

E ( g ( z t j )  - d z )  = - L , , , i g ( x , ) d s  (3.13) Lt 
where L,,,, = - + ( g i J a i a j  + g i J r i j k a k )  is the scalar Laplacian. This follows since 

, . ~ - .  -I ;v ,v , t (z j  = -LSca,f(zj  (3.14) 

and one can show that almost certainly e;,sei,s = g i J ( x s ) .  Hence one finds that 
f ( ~ , t )  = E ( g ( x , ) )  satisfies 

. .  

a f  - = -L,,,,f at (3.15) 

The two approaches to Brownian motion on Riemann manifolds are closely re- 
lated, because the I components of the process which solves the stochastic differential 
equations (3.11) have finite-dimensional distributions built from the heat kernel of 
the Laplacian. 

n rn ing  now to supermanifolds, a construction analogous to this second method 
will be described. While more genera! supermanifo!ds arc possib!e, attention i!! this 
paper will be restricted to those of the type constructed in section 2, because of their 
use in geometry and supelsymmetric physics; the general approach is applicable to 
other situations. The Brownian paths in superspace which will now be defined will 
lead to a Feynman-Kac formula for the Laplace-Beltrami operator L = ( d  + 6)2 
acting on C"(S(E) ,C)  introduced in section 2. Letting (B;L,p;l)a = 1,. .. , m  
denote m-dimensional fermionic Brownian paths 121 and letting ( z i ,  e ; ,  e', 11') be 
coordinates of a point in the extended bundle of orthognal frames S( O( M), E) 
introduced in section 2, consider the m + m2 + n stochastic differential equations 

i t 

x : = x ' + L  eh,.odb; e:,, = + - & , a r k l i ( x s ) e i , 8  odb: 

[; = Bi + @ ; e : , ,  + J, ( - [ : r ' j k i ( z a ) e f , s  odbg - B;d& 
f' , 

(3.16) 

1 + ,q!(ti + i * i ) ( F :  + i ~ < ) K j ~ ~ ( z ~ ) d s )  

where 

rt 3 = ef U,ll~ on. s (3.17) 

The existence of local solutions to such stochastic differential equations was estab- 
lished in theorem 5.2 of [2], while the usual patching techniques allow a global solu- 
tion to he constructed, since they transform covariantly under change of coordinates. 
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In order to establish a Feynman-Kac formula for the Laplace-Beltrami operator 
L = ( d + 6 ) 2 ,  vector fields W,(a = 1, ..., m) on S ( O ( M ) , E )  must be defined 
which are the canonical horizontal vector fields on S( O( M), E) regarded as a hun- 
dle over M with connection (I-, A). In a local coordinate system ( zi, e:, e', q p )  on 
S ( O ( M ) ,  E) these vector fields take the form 

(3.18) 

The key property of the vector fields W, is that, when acting on functions on 
S ( O ( M ) , E )  which are independent of the e: (that is, on functions of the form 
f = g D A where T is the canonical projection of S( O( M), E) onto S( E)) it is 
related to the Laplace-Beltrami operator L = i ( d  + 6)2 by 

-f(W,Wa-R:(z)Oi6,;- fR,iJc(z)O'0'66,,6,,+;[~,~j]Fij. '(z)o'6,.) = L 
(3.19) 

as may easily be seen from lemma (2.1). The following Feynman-Kac formula may 
then be established quite directly using theorem (3.2). 

Theorem 3.3. Suppose that (z:, e;, ,  , a;) satisfy (3.16). Then 

e x p ( - l t ) g ( z , @ ,  7) = E ( d z t , t , 3 v t ) )  (3.20) 

where L = +(d  + 6)*  is the Laplace-Beltrami operator acting on C"(S( E ) , C ) .  

ProoJ ijsing ii3j and the superspace it6 formuia (theorem 3.5 of iijj, 

E ( d z t , t t ,  17,)) - d z ,  8,  II) 
' 1  i b l  ZW. W,g(z,, %) - 4 R i j d " J t .  A , € : 6 , 4 ( + ,  > E ,  1 % )  

= E( 

t i(€: t ir:)(ti t ;ni)Fij p y 0 ~ 6 ~ . g ( ~ , , € ~ , a , ) d s )  

2 
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4. The AtiyahSinger index theown 

The supermanifold stochastic techniques developed in the previous section will now be. 
used to establish the Atiyah-Singer index theorem. As in the paper by Atiyah [24], the 
method used is to establish a stronger local version of the theorem in the particular 
case of the twisted Hirzebruch signature complex, by studying the heat kernel of the 
Laplacian. The full theorem may then be inferred by the K-theoretic arguments 

The starting point is the formula of McKean and Singer [17] and Witten [18] 
expressing the index of the complex in terms of the heat kernel of the Laplacian. 
As before, suppose that (M,g) is a compact Riemannian manifold of dimension 
m = 2k, and that E is an n-dimensional Hermitian vector bundle over M .  The 
formula of McKean and Singer then states that 

piest~Eib iii i24j. 

Index ( d +  6) = St rexp( -L t ) .  (4.1) 

Here d + 6 is, as before, the Hodgede  Rham operator and L = +(d  + 6)’ is the 
Laplace-Beltrami operator, while S t r  denotes the supertrace. With the identification 
of the space of twisted forms on A4 with the space of functions C”( S ( E ) , @ )  on 
the supermanifold S( E) set up  in section 2, the supertrace can be defined in the 
f ~ h v i i i g  iiiaiiiiei. Fiisi, ihe standard invoiuiion 7 may be defined on G- ’ (> (KJ ,  C j  
by the formula 

^_,, ̂, -~ 

(In this expression P I ,  . . . , p”’ are anticommuting variables and the integral is the 
Berezin integral defined in section 2. The definition is independent of the choice 
of local coordinates.) The supertrace is now defined for a suitable operator 0 on 
nm, ,o ,  n\ c., L.. *L^ c ̂_I 1. 
b ( J { r S J , L )  Uy LIIG IUll l lUld 

St r  0 = Tr TO (4.3) 

where Tr denotes the conventional trace. It emerges in the proof of McKean and 
Singer’s formula that the right-hand side of (4.1) is in fact independent of the real 
parameter 1.  

The Atiyah-Singer index theorem for the twisted Hirzebruch signature complex 
takes the following form. 

Theorem 4.1. With the notation of section 2, 

F 
Index (d  + 6) = [tr exp (>) det  (, ._ ,_ J M L  \ L R /  \ranhlhL/L7r/ J 

where F is the curvature 2-form of a connection on the bundle E, 0 is the Riemann 
curvature 2-Corm of (M,g) and the square brackets indicate projection onto the 
m-form component of the integrand. 
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Combining this with the McKean and Singer formula (4.1) one sees that an 
equivalent result is 

(Again this result is valid for all 1.) 
The following theorem is a stronger, local version of this result, 

Theorem 4.2. With the notation of theorem 4.1, if p E M, 

where s t r  denotes the 2"'n x 2 m n  matrix supertrace, as opposed to the full operator 
superaaee Str ,  so that s trexp(-Ht) (p ,q)  is then the kernel of the operator on 
Cm( M) obtained by this partial supertrace. 

The strategy for proving this theorem is to use the Feynman-Kac formula (theo- 
rem (3.3j) to anaiyse the operator exp( - t i t )  and then, using Duhamei3 formuia to 
extract information about the kernel (as in Getzler [25]), show that in the limit as 1 
tends to  zero only the required terms survive. The proof is thus carried out in several 
steps. 

Step I. An expression for the matrix supertrace in terms of Berezin integrals: 
As a peliminaly, the matrix supertrace of an operator will be expressed in terms 

of a Berezin integral of its kernel. Suppose that C ( p )  denotes the 2P-dimensional 
space of polynomial functions of p anticommuting variables; then a linear operator 0 
on this space has a kernel O(c ,  C )  = O(t1, .  . , , c p ,  C l , .  . , , C p )  which is a function 
of 2 p  anticommuting variables, and satisfies 

(4.7) ,. .,-% r .-. _,_ 
JL3 

U J ( U  = u ( c 3 i j . f i C j  

for all functions f in G ( p ) .  It can be shown by direct calculation that 

t r O =  L d P c O ( { , - < ) .  (4.8) 

= J ,  

Thus if 0 is an operator on Cm'(S( E),@) one has the local coordinate expression 

s t r O ( x , y )  = t r r O ( z , y )  

d m p d m Q d n q O ( ~ , ~ ,  p, - fA%-q)  

1 exp i p i @ g i j ( x ) .  xJm (4.9) 
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Step 2. The construction of a locally equivalent metric and connection on the super 
extension of Rm x @: 

Theorem (4.2) is a local resulc in order to prove this theorem at an arbitaly but 
k e d  point p E M it is in fact sufficient to replace the manifold M by Iw" and the 
bundle E over M by the trivial bundle Iw" x @" over Iw" with metric and connection 
satisfying certain conditions, and to prove the result for this simpler situation. The 
construction of a suitable metric and connection will now be given. Suppose that 
W is an open subset of A4 containing p which has compact closure and is both 
a coordinate neighbourhood of M and a local trivialization neighbourhood of the 
bundle E, and that U is also an open subset of M containing p with C W .  A I S 0  
let 4 : W - Rm be a system of normal coordinates on W based at p which satisfy 
det gij(z) = 1 at all points of U (and, of course, + ( p )  = 0) [21]. Additionally 
a local trivialization of the bundle E is chosen such that A,,"(O) = 0. Then the 
required metric G on Rm is a metric satisfying 

Gij(zl,. . . ,zm) = gij(4-'(z1, .  . . ,z")) 

Gi j  ( z', . . . ,z") = 6.. 

and det G,j = 1 throughout Rm. 

when z E + ( U )  
(4.10) 

when z 6 4( W )  * I  

Also, the required connection is a connection satisfying 

/ i i vyz l , .  . . ,z m)=~,.S(4-1(s1,...,2")) when z ~ 4 ( L i )  

/ i i , ' ( z ' ,  . . . ,z") = 0 

Some simple consequences of this definition are that, if R i j k f  denotes the Riemann 
curvature of (M, g) and Fii v s  denotes the curvature of the connection A on the 
bundle E, while tildes denote the corresponding quantities on Rm and Iw" x Cn, 

(4.11) 
when z 6 4 ( W ) .  

R i j k f ( z l , .  .. , z m )  = R i i k f ( + + - ' ( z l , .  . . ,z")) 

F . .  "(z', . . . )  z") = ci7y4-y2 ,..., z")) 
' I  l. 

(4.12) 

on +(U). Also one has the standard Taylor expansions in normal coordinates 124) 

G . . ( z ) = ~ ; ~ - $ z  k z f -  R k i C j ( 0 ) + . .  
:I  

T i j k ( Z )  = + ( ( R f i i k ( 0 )  + R r i j  (0))  + . . .  

, & T J ( z ) = - L ~ J F .  2 ' I  P s ( 0 ) + . . .  

(4.13) 
. -  

Cutting and pasting arguments, for instance as presented by Cycon et al in [21], 
shows that (if H denotes the Laplacian i ( d +  a)? on S ( R m  x C") with metric G and 
^̂ --̂ Î:̂  ̂ i\ 
uJIIIIGL.LL"'I rl, 

l im(s t rexp(-Ht) (p ,p)  - strexp(-fit(O,O)) = 0 .  (4.14) 

Thus in the rest of this section it will he sufficient to consider H on S(Rm x U?) in 
place. of H on S( E). 

1-0 
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Step 3. The use of the Feynman-Kac formula to give an explicit expression for the 
required matrix supertrace: 

Letting f i 0  be the flat Laplacian 

f i o  = -La.a. 2 i i  (4.15) 

on S(Rm x UY), andk , (x ,  x', 0, e', q,q') and I?:(., x',O, e', q, 7') denote the heat 
kernels exp - H t (  x ,  X I ,  @,e' , q, q' ) and exp  -Hot (  x,  x' , e ,  0' q, q'), Duhamel's 
formula [25] states that 

k t ( x , z i , e , e ' , q ,  - kp(x .x ' , e ,  e',q, 

where all differential operators act with respect to the variables x ,  0 and 9.  Now 

k,O( x, xi, e, e', q. 
d m p d " ~ ( 2 r r s ) - m / 2 e x p  -[(x - ~ ' ) ~ / 2 s ]  

(4.17) 
= J ,  

J, 

x exp[-ip(B - e')] exp[-in(q - q')] 

and direct calculation shows that s t r  k:(z,z') = 0. Thus, using (4.9). 

s t rk , (O ,O)  = dmOdmO'd"q 

I 

x 1 ds{ (e-( '- ' )*(f i  - fro) fi:( O,O, 8 ,  e', q, q')) 1 
x exp[-i8@']). 

Now, using the Feynman-Kac formula (3.20), 

e-(t--s)H (fi - f i 0 )R~(o ,o ,  e, e', q ,  a') 

(4.18) 

= IE d m p d " ~ ( 2 i i s ) - m / 2  

(4.19) 
J, 

x F s ( L , , ~ f - 8 1  P,L, -ip@'exp i w '  

where 

F , ( x , O , p , q ,  K )  = (H - H0)([exp -(x2/2s)exp(-ipe)exp(-i~q)] (4.20) 

(with differential operators again acting with respect to 2, 0 and q) and Z.,, i, 
and q, satisfy the stochastic differential equation (3.16) (in normal coordinates on 
S(Rm x C")) with initial conditions to = 0, ;io = 6;, to = 0 and Go = q. Hence 

. -  

s t rk t (O ,O)  = IE dmBd"O'dmpd"qd"r; 

I 

x ds(2rr~)-~'~F,(x~-~.t~-.,~~ '7t-s. K )  

x exp(-iOO') exp(ip0') exp(-inq) . (4.21) 1 
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Thus, integrating out 8' and p. one obtains 

strkl(O,O) = IE d"8d"qd"n ~ S ( ~ K S ) - " ~ F , ( Z ~ _ , , I ~ - ~ , ~ ,  vi-., K )  
(4.22) 

Srep 4. The replacement of the Hamiltonian fi by an equivalent Hamiltonian 8' 
of simpler form: 

The next step is to construct a simpler Hamiltonian fil on S(Rm x C")with heat 
kernel k l t ( x , x ' ,  8,8',  q ,  0') such that 

J ,  I' 
x exp(- inq) .  

1 i m s t r k ' , ( 0 , 0 )  = l imstrI ; ' , (O,0)  (4.23) 
1-0 1-0 

so that the required supertrace can be calculated. The modified Hamiltonian fi' is 
obtained by considering the following stochastic differential equations (which are a 
simplification of (3.16)): 

j.li - i 
t -6, 

(4.24) 

with 

where 
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Now, using Duhamel's formula again, and setting 

ca(z,(,e,o,n) = e x p - ( z 2 / 2 s + i B ( + i n q )  

one finds that 

ki(0,O) - k',(O,O) 

(4.28) 

At this stage it is useful to introduce the scaled variable 4 = G O ;  then, following 
the rules of Berezin integration (221, dB = a d 4  and thus 

k , ( O , O )  - k ' , ( O , O )  = A(1) + B(1)  

where 

d"'4dn~d"n(27rl)m'2 d s  (27rs)-'"/* id' 
and 

d"'4'dnqd"~(27r1)m/2 ds(2~s) -" ' /~  1' 

Now, using flat space Brownian motion techniques [26] together with fermionic Brow- 
nian motion techniques [l], one can show that for any suitably regular function f On 
s ( R m  x P), 

~f<"'r-srCAt-a, '7 i - * )  
- . ,-1 :1 -: \ 

= exp[- f i l ( t  - s)]f(z.--- '7) (by 4.26) m' 

(4.31) 
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(Here e:, pl, i , j  = 1,. . . , m are fermionic Brownian paths, while C P ,  K:" are a 
further set of fermionic Brownian paths, introduced to handle the twisted or gauge 
group part of the operator.) Thus A ( t )  can be estimated using b, - fi, OU - 
1, p, - 1,119 - 1, K: - 1. (The fermionic part of these estimates follows from 
theorem 3.3 of [2].) This estimation shows that A( 1 )  + 0 as 1 + 0. 

Now the stochastic differential equations (3.16) (in the normal coordinate system) 
and (4.24) are closely related, and one might expect that for small s their solutions 
would be similar. In fact, using the explicit construction of solutions developed in [Z], 
one can show (by induction) that - 59" - G, i, - e, - U and 6, - G', - U 

and E" - - U. This enables one to show that B ( t )  - 0 as 1 - 0. Thus 

lim s t r e x p [ - E j t ( ~ , ~ ) ]  = Iim s t r e x p [ - E j I t ( ~ . ~ ) ] .  (4.32) 
t -0  t - 0  

Frpp 5. Fva!uating !he snpertrace: 
The final step in the proof of the Atiyah-Singer index theorem is to evaluate 

lim,,ostrexp[-k't(O,O)] using flat-space path-integral techniques (both classi- 
cal [21] and fermionic [l]). 

Now, once. again using Duhamel's formula, and also using (4.31), 

s t r  exp[- R't(0,  o)] 

ds(2?rs)-"'/2dmf3' exp[-fi '(t - s)] 
t 

(4.33) 

Also, again using the estimates for flat space Brownian paths, it can be seen that 

Iim s t rexp  - B ' ~ ( o ,  0 )  
1-0  
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where 

(with 2 = 0' + 8/80'). Thus 

I ims t r exp-E j ' t (~ ,O)  = l ims t r exp-H2T2t (~ ,~ ) .  (4.36) 

Now H z  decouples into operators acting separately on the z variables, the 0 variables 
and the 17 variables. Explicitly, 

1-0 1-0 

H Z  = H: + Hgz+ H; (4.37) 

where (after some use of the symmetry properties of R i j k r )  

+d 
Rn'ikp R m , j t P )  H: = - (zaiai  1 + L i f * L R . .  kak + -z * k A l  

2 " ] I t  8 ( 2 7 4 2  
(4.38) 

4: 4; 
H2 = q l j P 6  1 #4j .t  fii - - R . .  x x  4 ' I k C 2 n t  'I' ' 

'I mV5z ' I P  

Now exp[-k;l(O,O)] can be evaluated using the result given by Simon [21] for R2 
that, if 

(4.39) 
1 iB 1 
2 .L = --a;a; + --("'a2 2 - "'a1) + ~ B ' I ( Z ' ) ~  + (z')~] 

then 

(4.40) E 
47r sinh( 4Bl)' 

exp[-Lt(o,o)] = 

Thus, if Ob' = i&@ Rijk'  is regarded as an m x m matrix, skew-diagonalized as 

(4.41) 

exp[ - f i~ t (0 ,0 )1=  mt2  n - in, 1 (4.42) 
2al s inh( iRk/2n)  ' k = l  
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Also, using fermion paths [l]  or direct calculation, 

exp[-t@(e, e')] 

= J, dmp( exp[-ip(O - e')] 

(4.43) 

Thus 

st*exp[-H2l(O,O)] 

(4.44) 

Hence, using (4.14), (4.32) and (4.36), 

s t r exp[ -H(p ,p ) ]dvo l=  
tanhiR/27r 

(4.45) 

as required. 
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