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Stochastic calculus in superspace: II. Differential forms,
supermanifolds and the Atiyah—Singer index theorem

Alice Rogers
Department of Mathematics, King's College, Strand, London WC2R 2LS, UK

Received 19 March 1992

Abstract. Starting with vector bundles over manifolds, supermanifolds are constructed
whose function algebras correspond to twisted differential forms. Stochastic calculus for
bosonic and fermionic Brownian paths is used to provide a geometric construction of
Brownian paths on these supermanifolds. A Feynman-Kac formula for the heat kernel
of the Laplace-Beltrami operator is then derived. This is used to provide a simple,
rigorous version of the supersymmetric proofs of the Atiyah-Singer index theorem.

1. Introduction

In this paper superspace stochastic calculus is used to define covariant Brownian paths
on supermanifolds, and thus to extend fermionic path integration to curved space.
The construction is used to study the Laplace-Beltrami operator on differential forms
on a Riemannian manifold.

The stochastic techniques employed in this paper are somewhat different from
those in other work where probabilistic methods are used to study the Laplace—
Beltrami operator on forms and related objects, The key difference is the use of
fermionic Brownian paths which are paths in a space of anticommuting variables.
This approach, which is described in [1] and the companion paper [2], is designed

hle ac clncaly ag nnccihla hath ctandard Wienar nathe and the farmi M
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paths of the physics literature which were introduced by Martin [3] and have proved
a powerful tool in heuristic calculations. Rigorous fermionic path integration along
these lines has also been considered by Haba [4]. Superspace stochastic calculus
considers Brownian paths in superspace, a space parametrized by both commuting
and anticommuting variables. Such spaces do not directly model physical space, but
are useful mathematical constructs because the spaces of functions naturally defined
on them carry representations of fermionic operators defined in physics, and also
(in a geometric context) of differential operators on forms on manifolds and on
cross sections of spin bundles. One aim of the current paper is to show that these
superspace paths, when handled in a rigorous manner, lead to new and useful analytic
techniques.

In the context of conventional probability theory (without anticommuting vari-
ables) an extended study of probabilistic techniques applied to many aspects of analy-
sis on manifolds has been made by Elworthy [5]; this work includes a straightforward
probabilistic proof of the Gauss-Bonnet-Chern theorem. There are a number of
other works on applications of probabilistic methods to index theory and localization,

0305-4470/92/226043+20$07.50 (© 1992 IOP Publishing Lid 6043



6044 A Rogers

such as the work of Bismut [6], Jones and Leandre [7], Leandre [8], Lott [9] and
Watanabe [10]. These other works use more technical probabilistic methods, such
as Malliavin calculus, than those of this paper, where analytic estimates based on
comparisons of solutions of stochastic differential equations are used. Also, in this
paper heat kerncls are obtained by Duhamel’s formula, rather than by the use of
Brownian bridges. Supermanifolds are also used in Getzler’s proof of the index the-
orem, which uses pseudo-differential operator methods to obtain the necessary heat
kernel asymptotics [11]. A detailed account of these methods may be found in the
recent book of Berline er al [12].

When considering fermions in curved space, and differential forms on Rieman-
nian manifolds, flat global superspace must be replaced by what is known as a super-
manifold; essentially supermanifolds are extensions of ordinary manifolds to include
anticommuting coordinates. Section 2 defines some supermanifolds which can be
constructed in a natural way from a vector bundle over a Riemannian manifold. The
construction does not depend in any essential way on which of the various approaches
to supermanifolds existing in the literature is used. The supermanifolds constructed
allow superspace stochastic techniques to be applied to various physical and geometric
problems.

Section 3 of this paper contains a geometric formulation of Brownian paths on
supermanifolds. As in the classical treatment of Brownian paths on a manifold
[13,14], this is done by constructing stochastic differential equations globally on the
supermanifold. Next, using key technical results from the companion paper [2], these
paths are used to give a Feynman-Kac formuia for the Laplace—Beltrami operator
for twisted differential forms.

In the final section of the paper this formula is used to give a rigorous version
of the very simple proofs of the index theorem using supersymmetry due to Alvarez-
Gaumé [15] and to Friedan and Windey {16]. In {15] and [16] the path integral
calculations are carried out by physicists’ methods which are not entirely rigorous,
particularly in curved space; the stochastic machinery developed in this paper al-
lows these steps to be made rigorous without spoiling the underlying simplicity and
elegance of the approach.

The proofs of the index theorem given in [15] and [16] used formulae for the
index of a differential operator in terms of an evolution operator exp — H't, where H
is the Hamiltonian of a supersymmetric system. The first example of such a formula
was given by McKean and Singer [17]; subsequently Witten showed that properties of
supersymmetric quantum mechanics could be used to derive many analogous formu-
lac [18]. The evolution operator was then expressed in terms of path integrals. Using
techniques which are not fully rigorous, it was then shown that, for the purposes of
calculating the index, the complicated curved-space Hamiltonian f could be replaced
by a much simpler flat-space supersymmetric magnetic oscillator Hamiltonian whose
evolution operator was then calculated exactly by standard methods. It is the validity
of this approximation which is established by the stochastic calculus techniques de-
veloped in this paper. The approach taken in this paper thus retains much of the
simplicity of the original supersymmetric proofs [15,16].

2. Supermanifolds and differential forms

This section is purely geometrical, constructing supermanifolds which provid; the
appropriate arena for the Brownian paths of sections 3 and 4. The supermanifolds
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are constructed using the data of a vector bundle over a conventional manifold in such
a way that the space of supersmooth functions on this supermanifold is isomorphic to
the space of twisted differential forms on the manifold. In section 3 this construction
is used to transfer superspace Brownian motion to bundles of twisted differential
forms.

A supermanifold is a space which has some commuting and some anticommuting
coordinates. There are a number of different approaches to supermanifolds in the
literature, which are broadly equivalent; the constructions in this paper do not depend
on the detailed aspects of any particular approach. The important fact is that all
local coordinates belong to a graded commutative algebra, with even elements (which
commute with elements of either parity) represented by lower-case Roman letters
and odd clements (which commute with even elements but anticommute with any
odd element} denoted by Greek letters. The dimension of a supermanifold is an
ordered pair of integers which specifies the number of even and odd local coordinates.
Some facts about the analysis of commuting and anticommuting variables are given
in section 2 of the companion paper [2]. More detailed accounts may be found
in [19]. As in the case of conventional manifolds, a supermanifold can be entirely
characterized by its coordinate transition functions, an approach that is used in this
section. Details of the reconstruction of a supermanifold from its transition functions
may be found in [20].

Let M be a smooth, compact m-dimensional real manifold and let E be a smooth
n-dimensional Hermitian vector bundle over M. Suppose that {I/ |a € A} is an
open cover of M by sets which are both coordinate neighbourhoods of M and local
trivialization neighbourhoods of E. For each o € A let ¢, : U, — R™ be the
coordinate map on U,, and for each o, 8 € A let ko5 : U, NUg — U(n) be the
transition function of the bundle E (so that for each p € U, NUy (h,4",(p)) is a
unitary n x n matrix). Additionally Jet {r,z|a,8 € A} be the coordinate transition
functions on M, that is 7,4 : da(U, NUs) = ¢, (U, N Up) with 7,5 = ¢, oz,
and let (m, 4% (x5)) = (82, /ozk) be the corresponding Jacobian matrix.

The required supermanifold S{E) is the (m, m 4 n)-dimensional supermani-
fold built over M with local coordinates (z!,...,e™,6.,...,67,n.,...,n) and
transition functions

Tog: (mé,...,mg,ﬁb,...,Bg‘,n}j,...,ng)
— (Taly,@(xﬂ)s Py T:};(x,e)s ma,ﬂlk(mﬁ)gg’ v 5maﬂmk(1’5)aga
hap (D5 (@s)0Gs g™ (@5 (25))705) - (2.1)

(Here and elsewhere the convention that repeated indices are to be summed over
their range is used.)

A useful space of functions is the space C*='(S( E)) of functions f which locally
take the form

flz.0,m)= 3 3 f.(2)0"n (22)
weM,, r=1

where p = py -y, is a multi-index with 1 € pu, < --- < pup £ m, M_ is the set of
all such multi-indices (including the empty one}, 6# = 9%+ ... @#* and each f,_ isin
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C>=(R™,C). (It should be noted that these functions are linear in the ™ but may
be multilinear in the 6°; the nature of the transition functions (2.1) ensure that such
functions may be con51stently defined.) Now it may be seen that, again as a result of
the choice of transition functions (2.1), there is a globally defined map

I1:T((M)® E) —» C='(S(E),C)

which may be obtained from the local prescription

()@, 0,m)= 3 D f.(2)0"n” i s(x)= 3 f,(a)dzte”

HEM,, =1 HEMm T=1
(2.3)

where (M) is the bundle of smooth forms on M and (el,...,e") is the appro-
priate basis of the fibre of the bundle E. Also, this map is an isomorphism of vector
spaces, and indeed of sheaves.

The crucial feature of this construction, which is itself quite simple, is that it
allows one to express the Hodge-de Rham operator on twisted differential forms
on M as a differential operator on the extended space of functions C*'( S( E),C).
Fermionic path integration techniques then alfow one to use stochastic methods to
analyse these operators in the usual way.

Explicitly, suppose that M is a Riemannian manifold with metric g, and that a
connection has been chosen on the bundle E. Then, in local coordinates, if one
introduces the notation 8; = 8/8z°, é,; = 8/80" and 6, = @/0n", the Hodge—
de Rham operator d 4 & takes the form

d+6=(0"—g"6,,)8;, - ¢"'T; 0 65600 + (0" = g7 65;)A; * 076, (2.4)

where I‘,.j" are the Christoffel symbols of the Riemannian connection on (M, g)
and A; .° are the components of the connection one form on E pulled back to
the coordinate neighbourhood by the section corresponding to the local trivialization.
Using the notation ' = & — g'/8/867, this takes the simpler form

t r
As will emerge in section 5, it is the heat kernel of the square of this operator, the
Laplace—Beltrami operator, which can be studied by fermionic stochastic calculus, and
is relevant to the proof of the Atiyah-Singer index theorem. For these purpose it is
useful to establish the following lemma, which is a twisted version of the Weitzenbock
formuia relating the Bochner Laplacian to the Laplace-Beltrami operator. The proof
uses the method of Cycon et af [21], generalized to the twisted case. (A normalization
factor of 1 is included in the Laplace-Beltrami operator to conform with the standard

2
normalization of Brownian motion.)

Lemma 21. Let L = 1(d + §)* be the Laplace-Beltrami operator on the space of
functions C*'(S(E),C). Then

L=~1(B-Ri(2)06y ~ LR, 7(2)0 076,60 + ;[0 ]| F;;,. (2)n™6,)
(2.6



Stochastic calculus in superspace: If 6047

where R,;™? arc the components of the curvature of (M, g), F;;,* are the com-

ponents of the curvature of the connection on E, and B is the twisted Bochner
Laplacian,

with
D" = at - F‘JkBJ 69& - A' r.!n'f‘én. . (2'8)

Proof.

= $((3{s', v} + ', ¥ ]) D, D, + v'[D;, | D;) (2.9)

(where {, } denotes an anticommutator and [,] denotes a commutator). Now

¥ ¥} = —g" (2.10)
while
S, @] DD,
= — 3L (8T — T T ™)0% 8y
+(8;4; .7 — A A C)nTéL)
= R;i(m)gi‘sﬂi + %Rki“(m)ei‘?kéa;’éef - %[Wﬂf)j]ﬂjr’(m)ﬂrén- .
(2.11)
Also
[Dis?] = =8,9'"80s — T, 76 — T, g7% 6,
=Ty ¢t (2.12)
Thus
‘fv’i[Di’lbj]D,’ = -¢i¢kr‘,-ijj
=9"T’ D; . (2.13)
Hence
L=-4g" D;D; ~ g1, D, ~ Ri(=)6'65; — 1Ry 7" (2)0' 658y
+ L IR ne,) (2.14)

as required.
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One further supermanifold is required for the stochastic constructions in the fol-
lowing section. This is a super extension S{O(M )}, E} of the bundle of orthonormal
frames on the m-dimensional manifold M (again twisted according to the Hermitian
bundle E). The supermanifold S(QO( M), E) can be defined by its coordinate transi-
tion functions; suppose that {U_|e € A} is again an open cover of M by sets which
are both coordinate neighbourhoods of M and local trivialization neighbourhoods
of E. Let zf,b%,i =1,...,m,u=1,...,4m(m — 1) be local coordinates on
O(M)|y, . Then S(O(M), E) is the [Sm(m + 1}, m + n]-dimensional supermani-
fold with local coordinates «},,b%, 6% ,n7. On overlapping neighbourhoods U, and
Upg the coordinates z*, 87, 5™ have the transition functions defined by (2.1), while the
coordinates b* transform as on the bundie of orthonormal frames QM ).

It should be noted that anti-commuting variables are introduced in order to pro-
vide function algebras which have geometric and physical applications; anticommuting
variables do not directly model physical situations. An important algebraic tool is the
Berezin integral [22] which integrates out the anticommuting variables to give a real
or complex number. This is defined in the following manner. Suppose that f is a
polynomial function of p anticommuting variables «!, ..., a. Then

fla) = kala® ... af + lower-order terms (2.15)

where k is a real or complex number. The Berezin integral is then defined by

/ fla)=k. (2.16)
B

The integral defined by this simple prescription has a number of useful properties
which will be exploited in later sections of this paper.

3. Geometric Brownian paths on supermanifolds

This section constructs Brownian paths on the supermanifolds introduced in section 2.
Before discussing these generalized Brownian paths in curved superspace, a brief
review of path integral techniques for classical manifolds is given.

Clearly it is not straightforward to transfer Brownian motion to the setting of a
general manifold, because Brownian motion, while invariant under rigid Euclidean
transformations, will not survive more general coordinate transformations. Various
analogues of Brownian motion on Riemannian manifolds have been considered, two
of which will be described here because they are suitable for generalization to su-
perspace. The first method is straightforward in principle—one simply replaces the
Wiener measure with a measure whose finite-dimensional marginal distributions are
based on the heat kernel of the Laplacian of the manifold, an approach which leads
almost trivially to a Feynman-Kac formula for a Hamiltonian which is the sum of the
Laplacian and arbitrary first-order and scalar terms. This approach has been used in
conjunction with fermionic Brownian motion in [23] to analyse the Hodge-de Rham
operator on a Riemann manifold, and hence prove the Gauss-Bonnet-Chern for-
mula; however its usefulness is limited by its dependence on information about the
heat kernel of the Laplacian, which is itself a highly non-trivial object.

A second approach to Brownian paths on manifolds, described in [13] and [14],
is to use paths which are solutions of stochastic differential equations, these being
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defined in a manner which is globally valid. The second-order correction term in the
It6 formula (equation (3.1) of [2]} prevents one from using vector fields and other
tensorial objects in the obvious way, a difficulty which is overcome by modifying the
It6 integral so that a compensating term is included in the transformation rule. The
most elegant way of doing this is to introduce the symmetric product or Stratonovich
integral, which is defined in the following way.

Definition 3.1. Suppose that X, and Y, are stochastic integrals with

dX, = f, b + fo ds  dY, =g, dbl + g, ,ds. (3-1)
Then

Y,0dX, =y Y, (£, ,db + fo ,ds) + 1S, .9, .ds. (3.2)

(Here b5,a = 1,...,m denotes m-dimensional Brownian motion, and db denotes
an It6 differential.) As before, a repeated index is summed over its range.

Now suppose that, for e = 0,1,...,m, A, are vector ficlds on a p-dimensional
manifold N. In a local coordinate system (z!,...,x?) where A, = A} (x)9/8z
consider the stochastic differential equation

da’ = Al (z,) 0 db® + Al(z,)ds. (3.3)

By applying the It& calculus one finds that (3) is form-invariant under change of
coordinate &, = #(z,), where T is a change of coordinate function. The solution
to such an equation exists globally, as can be shown by a careful patching argu-
ment [13, 14]. Such equations enable one to define a notion of stochastic flow on a
manifold. They also enable one to construct functions on N x R* which satisfy the
differential equation

3 .
5{ = %AaAaf with f(z,0) = h(z) (3.4)

where h is a smooth function on N and A, has suitable properties, as in the following
theorem.

Theorem 3.2. Suppose that z, is a solution to (3.3) with initial condition z; = = €
M. Then f(z,t) = E(h(x,)) satisfies the differential equation (3.4).

Outline of Proof. Using the It6 formula, and omitting details of the patching of
solutions over different coordinate neighbourhoods,

E(h(z,)) -h(m)zm(/ot aih(;cs)da:f;+f0 %Afl(s:s)Aﬂ(m,)&iajh(zs)ds).
(3.5)
Now

de! = Al(z,)db* + LA (2,)(8,AL(z,))ds. (3.6)
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Thus, using the fact that It6 increments db? have zero expectation and are indepen-
dent of b, when u £ s, one finds that

IE(h(;ct)) — h{z)
t . .
=B( [ 344(2.)(0,4i(=.)3ih(z,)
+ 5 AL(2,) A (2,)8,9;h(z,)ds)
= —/‘t %AaAah(xs)ds . (3.7
0
Hence, for suitable A,,

E(h(z,)) = e3(AeAadip () (3.8)

and thus f(=z,t) = E{h(z,)) solves (3.3). (The z dependence of f(z,t) comes from
the initial condition satisfied by x,.) a

In the case of a Riemannian manifold ( M, g}, when one wishes to construct paths
which will help in the study of the Laplacian and related operators, one uses O( M),
the bundle of arthonormal frames on M, as the manifold N, and considers the m
canonical horizontal vector fields on this bundle as the vector fields A,. Suppose
that (p,e,) is a point in O(M), thatis, pisa pointin M ande,, e =1,...,m is
an orthonormal basis of the tangent space at p. Then, if &' are local coordinates at
p and

€, = € (3.9)

the m canonical horizontal vector fields on O( M) are

1 8 i 7 k 8
Va = ea% -— eaeiri’- (:r)a_ef (3.10)

where the functions T';,,,* are the Christoffel symbols for the Riemannian connection.

In this case, following the general form of (3.3), one obtains the stochastic differential
equations

da! = e}  odb? del , = —el ef T (x,)0db}. (3.11)

To see the connection with the Laplacian, suppose that zi, e;s, (a,i =

1,...,m) are solutions to (3 11) with initial condmon (m a partlcular coordinate

system) z, = ¢z € M, €' o = e, where e, = e, t 8/« is an orthonormal frame at

z. Then, agam omitting details of the patchmg of solutions on different coordinate
charts, if f is a smooth function on O{ M),

B(f(z0ed) - f(.e) = [ VVoS(zoe,)ds. (3.12)
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In the particular case where f depends on z only, (that is, f = go = where = :
O(M) — M is the projection map, and g € C™(M)),

t
E{g(z,)) ~ g(z) = j — L 9{z,)ds (3.13)
1]
where L., = —3(9"8,8; + g''T;*8,) is the scalar Laplacian. This follows since
sVaVo i) = - Loy f(2) (3.14)
and one can show that almost certainly ef ,el . = g*/(x,). Hence one finds that

flz,t)= }E(g(a:,)) satisfies

%{f = _Lscalf‘ (315)

The two approaches to Brownian motion on Riemann manifolds are closely re-
lated, because the = components of the process which solves the stochastic differential
equations (3.11) have finite-dimensional distributions built from the heat kernel of
the Laplacian.

Turning now to supermanifolds, a construction analogous to this second method
will be described. While more general supermanifolds are possible, attention in this
paper will be restricted to those of the type constructed in section 2, because of their
use in geometry and supersymmetric physics; the general approach is applicable to
other situations. The Brownian paths in superspace which will now be defined will
lead to a Feynman-Kac formula for the Laplace-Beltrami operator L = (d + §)2
acting on C*(S(E),C) introduced in section 2. Letting (8%,p%)a = 1,...,m
denote m-dimensional fermionic Brownian paths {2] and letting (z*,¢’,6',1") be
coordinates of a point in the extended bundle of orthognal frames S(O(M), E)
introduced in section 2, consider the m + m? + n stochastic differential equations

t t
;ci:a:i+] e‘i,sodb‘;’ efm =ei+f —eﬁ‘,I‘M"(ms)ef'sodbg
0 )
, . . £ty . . . ; .
§=0 +orel + | (-€Ti(e,)e], 0 db) - o1del,
+ 415'; Rijkr(“—'s)ff’rﬁds) (3.16)
t .
=t [ (elmay ) odn
0

| N
+ 8 (6 +im) (€ +im)) £y P (2,)ds)
where

xl=¢el p°. (3.17)

The existence of local solutions to such stochastic differential equations was estab-
lished in theorem 5.2 of [2], while the usual patching techniques allow a global solu-
tion to be constructed, since they transform covariantly under change of coordinates.
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In order to establish a Feynman-Kac formula for the Laplace-Beltrami operator
L = (d + 6)?, vector fields W, (a = 1,...,m) on S(O(M), E) must be defined
which are the canonical horizontal vector fields on S(O(M), E) regarded as a bun-
dle over M with connection (I, A). In a local coordinate system (', €%,8%,n?) on
S(O(M), E) these vector fields take the form

) .
W, =¢, 72— —elefl’
1

- eigkrjki'—a“ —elnA; 0 0

aps L 3,?5 ) (3'18)

i* Ber
The key property of the vector fields W_ is that, when acting on functions on
S(O(M), E) which are independent of the e} (that is, on functions of the form

f = gom where = is the canonical projection of S(O(M ), E) onto S(E)) it is
related to the Laplace-Beltrami operator L = 1(d 4 6)? by

— (W, W, — RI()078,; — L R,;74(2)0°0% 64,84, + W) Fy S (Enm6,,) = L
(3.19)

as may easily be seen from lemma (2.1). The following Feynman-Kac formula may
then be established quite directly using theorem (3.2).

Theorem 3.3. Suppose that (x}, ¢! ,,n7) satisfy (3.16). Then

exp(~Lt)g(z,0,n) = E(g(x,,&,,n,)) (3:20)

where L = 2(d + 6)? is the Laplace-Beltrami operator acting on C*'(S( E), C).

FE SN

]E(Q(l';,ﬁw"h)) "9(%9,7?)
t i .
- IE(./D EWaWag(lC,,ﬁs,ﬂ_,) - z}R‘jkg(l',)fﬁwﬁéiésig(ms,6‘,,773)
+HE HITE +ind) 08,0902 €005 )
‘1 i i 1 il ink
=F f §(WaWa - Ri(z)0'84; - ER,“--’ (z)0°0%6,,8,:
0
+ B W () g (2,104 (321)

using properties of fermionic paths ([2] equation (2.15)). Hence, if

f(Isevnst) = E(g(ztaﬁt!nt))
t (3.22)
f(x,e,n,t)—f(x,o,n,0)=]0 —Lf(x,0,7,5)ds

and the result follows. a
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4, The Atiyah-Singer index theorem

The supermanifold stochastic techniques developed in the previous section will now be
used to establish the Atiyah-Singer index theorem. As in the paper by Atiyah [24], the
method used is to establish a stronger local version of the theorem in the particular
case of the twisted Hirzebruch signature complex, by studying the heat kernel of the
Laplacian The full theorem may then be inferred by the K -theoretic arguments

iy

pl’cacutcu in laq J

The starting point is the formula of McKean and Singer [17] and Witten [18]
expressing the index of the complex in terms of the heat kernel of the Lapiacian.
As before, suppose that (M, g) is a compact Riemannian manifold of dimension
m = 2k, and that F is an n-dimensional Hermitian vector bundle over M. The
formula of McKean and Singer then states that

Index (d+ 6) = Strexp(—L1). @1

Here d + & is, as before, the Hodge-de Rham operator and L = 1(d + 6)? is the
Laplace-Beltrami operator, while Str denotes the supertrace. With the identification
of the space of twisted forms on M with the space of functions C*/(S{E),C) on
the supermanifold S(E) set up in section 2, the supertrace can be defined in the

fuuuwmg manner. First, the standard involution may be defined on &% [b(b) ll,)
by the formula

r( ) if#r(w)f?“n‘")

pEM,, =1

dm ———expip‘oig,..(x)f,,(;c)pf*n’". (4.2)
GZM: Z/ det(g;;(=)) T

(In this expression p',. .., p™ are anticommuting variables and the integral is the
Berezin integral defined in section 2. The definition is independent of the choice
of local coordinates) The supertrace is now defined for a suitable operator O on

I's s A
C>(S(E),C) by the formula

StrO = TrrO (4.3)

where Tr denotes the conventional trace. It emerges in the proof of McKean and
Singer’s formula that the right-hand side of (4.1) is in fact independent of the real

parameter ¢,
The Atiyah-Singer index theorem for the twisted Hirzebruch signature complex

takes the following form.

Theorem 4.1, With the notation of section 2,

Index (d + 6) = [ [tr exp (—;;) de (—IQ/E%\ §‘| (4.4)

Jml tanhi{l/2m /|

where F is the curvature 2-form of a connection on the bundle E, 2 is the Riemann
curvature 2-form of (M, g) and the square brackets indicate projection onto the
m-form component of the integrand.
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Combining this with the McKean and Singer formula (4.1) one sees that an
equivalent result is

Strexp(—Ht) = ]M [tr exp(—;—f:-) det(;a—liliz—i{%%;)%]. (4.5)

(Again this result is valid for all ¢.)
The following theorem is a stronger, local version of this result.

Theorem 4.2,  With the notation of theorem 4.1, if p € M,

(4.6)

_F iQ/2r  \?
ltLrla strexp(—Ht){p,p)dvol = [tr eXp(-.‘ZT) det (m) ]
r

where str denotes the 2™ n x 2™ n matrix supertrace, as opposed to the full operator
supertrace Str, so that strexp(—H1)(p,q) is then the kernel of the operator on
C*>( M) obtained by this partial supertrace.

The strategy for proving this theorem is to use the Feynman-Kac formuia (theo-
rem (3.3)) to analyse the operator exp(— f t) and then, using Duhamel’s formuia to
extract information about the kernel (as in Getzler [25]), show that in the limit as ¢
tends to zero only the required terms survive. The proof is thus carried out in several
steps.

Step 1. An expression for the matrix supertrace in terms of Berezin integrals:

As a peliminary, the matrix supertrace of an operator will be expressed in terms
of a Berezin integral of its kernel. Suppose that G(p) denotes the 27-dimensional
space of polynomial functions of p anticommuting variables; then a linear operator O

on this space has a kernel O(&,{) = O(&,,...,&,, (,-..,¢,) which is a function
of 2p anticommuting variables, and satisfies
) llf—\_ I’ A WA RN A Y . B AN
UIU;)—] arq GG, ()J6) (+7)
B
for all functions f in G{p). It can be shown by direct calculation that
trO = ] dPEO(E,-¢) . (4.8)
B

Thus if O is an operator on C®'(S(E),C) one has the local coordinate expression
str O(z,y) =tr70(x,y)

= f d™pd™0d” 1 Oz, y, pr—0, 1, —1)
B

1 i
X —pm——————expip'?¥ g;;(z) . (4.9)

/det(g;; (=)}
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Step 2. The construction of a locally equivalent metric and connection on the super
extension of R™ x C:

Theorem (4.2) is a local result; in order to prove this theorem at an arbitary but
fixed point p € M it is in fact sufficient to replace the manifold A by R™ and the
bundie E over M by the trivial bundle R™ x C* over R™ with metric and connection
satisfying certain conditions, and to prove the result for this simpler situation. The
construction of a suitable metric and connection will now be given. Suppose that
W is an open subset of M containing p which has compact closure and is both
a coordinate neighbourhood of M and a local trivialization neighbourhood of the
bundle E, and that U/ is also an open subset of M containing p with U cW. Also
let ¢ : W — R™ be a system of normal coordinates on W based at p which satisfy
det g;;(z) = 1 at all points of U {(and, of course, ¢(p) = 0) [21]. Additionally
a local trivialization of the bundle E is chosen such that A, °(0) = 0. Then the
required metric § on R™ is a metric satisfying

Gij(zhy. . 2™) = g (o7 (@t ™)) when = € ¢(U)

(4.10)
g (& 2™y =6 when =z ¢ (W)
and det §;; = 1 throughout R™.
Also, the required connection is a connection satisfying
A2 ™) = AL (87N, 2™) when z € ¢(U)
(4.11)

A; (2t .,2™) =0 when = ¢ ¢(W).

Some simple consequences of this definition are that, if R,;,’ denotes the Riemann
curvature of (M, g) and F}; * denotes the curvature of the connection A on the

bundle E, while tildes denote the corresponding quantities on R™ and R™ x C",
Ra‘jkr(“‘la e, x™) = R,'jkf(qf'_l(a:l, cez™))

i _ o (4.12)
Fijrs(l'l,. s ,.’I’Jm) = -F” rs(qs—l(ml, e ,wm))

on ¢(U). Also one has the standard Taylor expansions in normal coordinates [24]
gi;(z) = 6;; — %xkiﬂtﬁkw(o) + -

Pit(e) = §e'(Ry*(0) + Ry b (o) + -+ (413)
A () = =4 By S0 4 o

Cutting and pasting arguments, for instance as presented by Cycon et al in [21],

shows that (if H denotes the Laplacian %(d-{- §¥? on S(R™ x C™) with metric § and

AN
LCUILIEWLIOIL A )

lim(strexp(—H1)(p,p) - strexp(—H1(0,0))=0. (4.14)

Thus in the rest of this section it will be sufficient to consider # on S(R™ x C") in
place of H on S(E).
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Step 3. The use of the Feynman-Kac formula to give an explicit expression for the
required matrix supertrace:
Letting H° be the flat Laplac1an

H® = _198.5, (4.15)

on S{(R™ xC"), andI\t(m z',0,8,n,1')and K%x,2',6,6,n,7n') denote the heat

kernels exp —Ht(z,z',0,6',n,7') and exp—-H%(z,2',6,¢,n,%), Duhamel's
formula [25] states that

Kz, 2,0,8,n,7) - K}(z,',0,0',n,7)

= -/: dse”DF ([ YKz, 2',0,0 0, 7) (4.16)
where all differential operators act with respect to the variables z, 8 and n. Now
Kx,2',0.0,7,7)

= ./a d™pd™k(2ms)" ™/ % exp —[(x — z)% /2]

x exp[~ip(8 — ¢')] exp[—ir(n - 1')] (4.17)
and direct calculation shows that str K0(z, ') = 0. Thus, using (4.9),

str 1,(0,0) = /d"‘Bdmﬂ’d“n
B

y fot ds{ (e~ (T - ﬁO)ﬁ'g(o,o,e,9’,n,n'))lnf=_
x exp[-i08'}} . (4.18)
Now, using the Feynman-Kac formula (3.20),
e~(=DH (- A% [%(0,0,0,60,1,7')
= IE/r;dmpd“n(Qﬂ's)_m/z

X F_,(a?:,_‘,,f—tﬂ,p,ﬁt_s,n) exp —ipt expikn’ (4.19)

where
F(z,0,p,m,k) = (H— H" ([exp —(2?/25) exp(—iph) exp(—ixn)] (4.20)

(with differential operators again acting with respect to z, 6 and ) and Z,, &,
and 7, satisfy the stochastic differential equation (3.16) (in normal coordinates on

S(R™ x ™)) with initial conditions &, = 0, & , = 6., £, = 0 and 7, = n. Hence
str K,(0,0) = ]E[f d™0d™§'d™ pd"nd™k
8
t
X ./ ds(21rs)—m/2F’(It_“ E1oss P Mg )
0

x exp(—i66’)exp(ip()’)exp(—inn)] . (4.21)
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Thus, integrating out &' and p, one obtains

t
str K,(0,0) = E/ ded“nd“nf ds(278) ™2 F (2, 60y 0, Ty ge K)
B 0
x exp(—ikn). (4.22)
Step 4. 'The replacement of the Hamiltonian & by an equivalent Hamiltonian A1
of simpler form: .
The next step is to construct a simpler Hamiltonian H'! on S(R™ x C™)with heat
kernel K1, (z,2’, 6,8 ,n,7') such that

lim str K',(0,0) = lim str K,(0,0) (4.23)

so that the required supertrace can be calculated. The modified Hamiltonian A is
obtained by considering the following stochastic differential equations (which are a
simplification of (3.16)):

t
fli=0"406;6 + /( EY9&" (Ry;" + Ry )dbk

Ya; pi Lajpk=1tp i (*24)
+ §€ LR s——:{{;' T Ry rd-"')
f1_
ﬁlf:nr+f 27906t —imi )8 ~imd ) Fy, Pd
o 4
with
71 = posl. (4.25)
(Here R = f% ij,(0) and F; ¢ f"‘liqu(O), with indices raised and lowered
by g5 (0) = &y

Then, if f E C°°’(S'(1R1m x C*)),

E(f(2', €' 7)) = £(0,0,m) = E( j£ e ,él,ﬁz)ds} (4.26)
where
H'= —[16,8, - 1R;;*" 6°67 64u 65 + LREG7 6

- lR’Féfag,. + A T IF 16, - 20T R (RS + Ry Y8y,

— B SRS Ry + Ry W R + REL)60.605] . (427)

(Here the physicist’s convention of denoting operators with hats is adopted to avoid
ambiguities. )
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Now, using Duhamel's formula again, and setting

G,(2,£,6,m, 1) = exp —(x%/2s +16¢ + ix7) (4.28)
one finds that

K,(0,0) - K,(0,0)
¢
=Efdm9d“nd“n] ds (27s)"™/?
B 0

% [(ﬁ — %G, (x,£,0,0,%)

r=Fi 0, E=Eio0, 0=,

—(H' - H%)G,(,6,0,n,x)] 429)

"—'5’4—-.f=f-1r—nﬂ=ﬁ1|--]

At this stage it is usefu] to introduce the scaled variable ¢ = v/2xt6; then, following
the rules of Berezin integration [22], d6 = v/2xtd¢ and thus

#,(0,0) - K',(0,0) = A(t) + B(1)

where

t
A(t) = Efdmasd“nd“m(zm)mﬁ] ds(2ws)~™/?
B 0

X [(j:] - gl)Gg (1‘,5,%,0, K‘)

(4.30)

$=5't—..f=£1¢-nﬂ=ﬁ11—-]
and
t
B = Efdm¢d“nd"n(2wt)m/2f ds(2ns)"™/?
B 0
X [(ﬁ - HO)G (mafs_(’b‘“,?’l,n)l :
? V2t #=F1e0, b0 n=ims
- (A - H%G (x,¢,

V2t e

Now, using flat space Brownian motion techniques [26] together with fermionic Brow-
nian motion techniques [1], one can show that for any suitably regular function f on
S(BR™ x C"),

w=Fty_, f=&t o n=1ili—,

o=l 1 =1 it
J'E‘JU"‘ t—s’c t—sr 1 t-—a)

= exp[- H(t - 8)] f(=, (by 4.26)

2 n)
\/27rt’
t—38 H
= E[exp (/ﬁ -i(aj‘ —imi )0 —im)FY ISP ] du
1 . i . i ; .
—ZRUH@LB‘LPtPLd“+;—Ruelpid“—geipﬁbi(f{ckj +Ruk’)dbﬁ)

x f(bt—a?% +0,_,.n+ n?__,)] . (4.31)



Stochastic calculus in superspace: I 6059

(Here 6, p},i,j = 1,...,m are fermionic Brownian paths, while n3?, <], are a
further set of fermionic Brownian paths, introduced to handle the twisted or gauge
group part of the operator.) Thus A(¢) can be estimated using b, ~ /u, 8, ~
1L,p, ~ 1,52 ~ 1,k ~ 1. (The fermionic part of these estimates follows from
theorem 3.3 of [2].) This estimation shows that A(t) —0as ¢ — 0.

Now the stochastic differential equations (3.16) (in the normal coordinate system)
and (4.24) are closcly related, and one might expect that for small s their solutions
would be similar. In fact, using the explicit construction of solutions developed in [2],
one can show (by induction) that &, — #!, ~ Vu®, £, — &, ~u and A, — 7', ~ ¢
and &, — €L ~ u. This enables one to show that B(t) — 0 as ¢ — 0. Thus

ymé strexp[— H1(0,0)] = lting strexp[—H't(0,0)]. (4.32)

Step 5. Evaluating the supertrace:

The final step in the proof of the Atiyah-Singer index theorem is to evaluate
lim,_ strexp[— H'¢(0,0)] using flat-space path-intcgral techniques (both classi-
cal [21] and fermionic [1]).

Now, once again using Duhamel’s formula, and also using (4.31),

strexp[—H11(0,0)]

= IEI[] dmpd"nd x (27t)™/?
5

t
X / d.s(2ws)_m/2dm9'{exp[—f:11(t —3))
0

x(H - %G (O,L,B', = )ex —(ikn) ex (—i ¢ 0’)}”
( }G, Jzap O oM exp (ixn)exp T

i
- ]EU d’“@d"’nd”m/ ds(2ms)~ /2
B 0

L L S T .
X [exp(A :1“(9;—l‘n’;)(Bi-—l‘J’r{‘)F;.J.pq(jnﬂqmgu-6;)(111,
1 o i - i . .
- &"Rijkiezzaipﬁpi + ER,-J-G:‘p{Ldu + gﬁip:bi(}ztkj‘ + szkg)dbﬁ)
x (' - HG, (3:,{,

@ ) .
—_—, 0, K ex .
Vant’ plm’]

r:b,_,,f:S,_.,a:n?_.

{4.33)
N

Also, again using the estimates for flat space Brownian paths, it can be seen that

limstrex $(0,0)

t—0

p—~H!
1
=E{ltirra-/qubd"nd"n(??ri)m/z/ ds (211'.5)""‘/2[(1?2—-1:1'0)
—~YJs 0

[+

x Gs(ms‘fi\/—%saan) exp(-—-inn)]} (4.34)

T=bio 4, £ =0, 0=1
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where
-0 1 1 ! 1 .y
H? = - (28'6'_3\/2T\/2—ﬂ-—( t jl t; :)"Bak—ﬁm T
or g™ ¢ o
I R R 1
\/Q—W_\/Z_T?—\/Q—F'\/QT( k;pns+ knps)( th+Rtm )
. ]‘n ¢‘ ¢J "k lu ¢‘ qu .i‘:.ﬂc \ sAFEN
sk i ot X X T Jomt ot e 1 0w A
(with %' = 6' + 8/86'). Thus
lin[} strexp — H'1(0,0) = ltir% strexp —ﬁzi(0,0) . (4.36)

Now H? decouples into operators acting separately on the z variables, the @ variables
and the 7 variables. Explicitly,

H*= A2+ H} + A} (4.37)

where (after some use of the symmetry properties of R;; ;)

T . . i k k tﬁbi(y‘bﬂ ¢m P
x = (26181 + 17 \/‘—— \/2—‘"_“ ;at ak + (27I't)2 Rn'ikp Rm’jl )
o : (4.38)
7 1 &' k. ; @'
| kot 2
Ha——jl' :‘jkt?ﬁx X Hn____“—_/g_f'— ijp 7ré

Now exp[- HZ2t(0,0)} can be evaluated using the result given by Simon [21] for R?
that, if

L= 100+ (50, — 20 + LB + (22 (439)

then

B

5 4.40
4~ sinh(3 Bt) (4.40)

exp(-L1(0,0)] =

Thus, if 2, = Loi¢/ R, ;&' s regarded as an m x m matrix, skew-diagonalized as

0o Q ... 0 0
-, 0 ... O 0
=1 : + (441)
0 0 ... 0 D,
\o o ... -9, o0
mf2

. e, 1 4.42
_exp[—th(U,O)] = E 2t sinh(iQ,/27) @42
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Also, using fermion paths [1] or direct calculation,
exp|-tH3(6,6)]

= fsdmp{ exp[~ip(8 — ¢')]

m/f2

iQ, 2k-1 y : 2k—1yr g2k o ¢ 2ky s i, }
X kl;I][cosh o + (0 +ip*" T )8 +1p*")sinh 5o .
(4.43)
Thus
strexp[— A?%(0,0)]
mi2, .
= [ame TT e L 192 ; ﬂ)
- /,;d ¢kI=-[1 27 sinh(iQ,/27) cosh 47 tr[exp (—¢' ¢ 27 /|’
(4.44)
Hence, using (4.14), (4.32) and (4.36),
strexp[—H(p,p)]dvol = [tr exp ( 7 ) det (—tanh iQ/Qﬂ') ] ) (4.45)
as required.
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